ITGAV and ITGA5 diversely regulate proliferation and adipogenic differentiation of human adipose derived stem cells

نویسندگان

  • E. M. Morandi
  • R. Verstappen
  • M. E. Zwierzina
  • S. Geley
  • G. Pierer
  • C. Ploner
چکیده

The fate of human adipose tissue stem cells (ASCs) is largely determined by biochemical and mechanical cues from the extracellular matrix (ECM), which are sensed and transmitted by integrins. It is well known that specific ECM constituents influence ASC proliferation and differentiation. Nevertheless, knowledge on how individual integrins regulate distinct processes is still limited. We performed gene profiling of 18 alpha integrins in sorted ASCs and adipocytes, identifying downregulations of RGD-motif binding integrins integrin-alpha-V (ITGAV) and integrin-alpha-5 (ITGA5), upregulation of laminin binding and leukocyte-specific integrins and individual regulations of collagen and LDV-receptors in differentiated adipocytes in-vivo. Gene function analyses in in-vitro cultured ASCs unraveled differential functions of ITGA5 and ITGAV. Knockdown of ITGAV, but not ITGA5 reduced proliferation, caused p21(Cip1) induction, repression of survivin and specific regulation of Hippo pathway mediator TAZ. Gene knockdown of both integrins promoted adipogenic differentiation, while transgenic expression impaired adipogenesis. Inhibition of ITGAV using cilengitide resulted in a similar phenotype, mimicking loss of pan-ITGAV expression using RNAi. Herein we show ASC specific integrin expression patterns and demonstrate distinct regulating roles of both integrins in human ASCs and adipocyte physiology suggesting a negative impact of RDG-motif signaling on adipogenic differentiation of ASCs via ITGA5 and ITGAV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells

Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...

متن کامل

The effects of cinnamaldehyde and eugenol on human adipose-derived mesenchymal stem cells viability, growth and differentiation: a cheminformatics and in vitro study

Objective: The aim of this study was to estimate the cheminformatics and qualitative structure-activity relationship (QSAR) of cinnamaldehyde and eugenol. The effects of cinnamaldehyde and eugenol on the viability, doubling time and adipogenic or osteogenic differentiations of human adipose-derived mesenchymal stem cells (hASCs) were also investigated.  Materials and Methods: QSAR and toxicity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016